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A series of large-eddy simulations of plane Poiseuille flow are discussed. The 
subgrid-scale motions are represented by an eddy viscosity related to the flow 
deformation - the ‘Smagorinsky ’ model. The resolution of the computational mesh 
is vaned independently of the value of the coefficient C, which determines the 
magnitude of this subgrid eddy viscosity. To ensure that results are from a 
statistically steady state unrealistic initial conditions are used and sufficient time is 
allowed for the flow to become independent of the initial conditions. In  keeping with 
previous work it is found that for large C, the resolved-scale motions are damped out ; 
however, this critical value of C, is found to depend on the mesh resolution. Only with 
a fine mesh does the value of C, previously found to be appropriate for homogeneous 
turbulence ( x 0.2) give simulations with sustained resolved-scale motions. The ratio 
Z,/S of the channel width 28 to the scale of the ‘ Smagorinsky ’ mixing length, I ,  = C, d 
where d is a typical mesh spacing), is found to be the key parameter determining the 
‘turbulent ’ eddy-viscosity ‘ Reynolds number’ of the resolved-scale motions. A fixed 
value of I ,  is regarded as determining the separation of scales into resolved and 
subgrid. The value of C, is regarded as a measure of numerical resolution and values 
of C, less than about 0.2 correspond to inadequate resolution. 

1. Introduction 
In many turbulent flows it is clear that the flow properties are dominated by the 

influence of large-scale turbulent eddies. Such eddies produce turbulent transports 
which depend on the gross character of the flow and have a very indirect relationship 
to the local mean-flow structure. The failure of time-average turbulence closure 
techniques, whether simple eddy-viscosity models or complex high-order closure 
techniques, is often related to this difficulty. The advent of computers powerful 
enough to compute three-dimensional time-dependent flows has allowed the develop- 
ment of large-eddy-turbulence simulation. This technique involves calculating the 
large-scale (resolved-scale) turbulent motionsexplicitl y and attempting to parametrize 
the effects of the small-scale (subgrid-scale) motions. Provided that the main scales 
of motion involved in turbulence energy production are resolved by the numerical 
model, there are two reasons contributing to the success of such an approach. First, 
as the model resolves most of the energy-containing eddies, the results might be 
anticipated to be insensitive to the details of how the small-scale motions are dealt 
with. Secondly, it is observed that, while large-scale eddies differ considerably 
between flows, the small-scale motions hardly change in character. The small-scale 
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motions are generally more isotropic than the large-scale motions and may thus be 
parametrized more rationally. 

Previous studies with large-eddy models have considered a range of different flows. 
Notable examples are homogeneous isotropic turbulence (McMillan & Ferziger 1979 ; 
Antonopoulos-Domis 1981), buoyant convection (Deardorff 1974) and turbulent 
channel flow (Moin & Kim 1982, referred to hereinafter as M & K). The studies of 
homogeneous turbulence have given encouraging and relatively straightforward 
results. The subgrid-scale motions have been parametrized using the eddy-viscosity 
formulation originally proposed by Smagorinsky ( 1963). This formulation (see 
(2.3)-(2.7) below) requires a value for the constant C, relating the ‘mixing-length’ 
scale of the parametrization to the mesh scale of the numerical simulation. Lilly (1967) 
applied the usual local-equilibrium-turbulence arguments to deduce, from the 
spectrum of homogeneous turbulence, a value for C, of about 0.23. Recently 
Antonopoulos-Domis (1981) has confirmed that the averaging operators implicitly 
involved in second-order-accurate finite-difference approximations are consistent 
with this value. With this value of C,, and meshes varying from 1fj3 to 643 grid points, 
the large-eddy simulations appears to give an accurate description of the decay of 
homogeneous turbulence. With the limited number of mesh points available for 
practical calculations the effective ‘ turbulent ’ Reynolds number, based on the 
magnitude of the Smagorinsky eddy viscosity and the amplitude of the larger-scale 
flow components, is always low and typically a few hundred. It is consequently 
impossible to resolve much of the inertial subrange and the calculated rates of decay 
of homogeneous turbulence should depend on this ‘turbulent ’ Reynolds number. The 
dependence of the decay rate upon the values of C, is precisely this effect. When 
comparing calculated rates of decay with measured values, the data are usually 
‘filtered’ to remove scales not explicitly resolved by the computational mesh. As we 
shall discuss, the basis for choosing the lengthscale and form of the filter applied to 
the data requires a clear understanding of what scales the simulation actually 
represents . 

The large-eddy simulations of buoyant convection (e.g. Deardorff 1974) are very 
impressive and provide good agreement with observations in a case where time- 
averaged techniques fail. The same value of C, as used in homogeneous turbulence 
studies is found appropriate. The corresponding value for use in the temperature 
equation is less certain but not the subject of concern here. 

In  contrast to studies of homogeneous turbulence and buoyant convection, the 
studies of large-eddy simulations of turbulent channel flow have proved more difficult 
to conduct successfully. The instability mechanism driving the turbulent eddies 
(Orszag & Kells 1980) is nonlinear in character and the ability of numerical simula- 
tions to sustain initial turbulence depends on the structure and intensity of initial 
perturbations. Also, in contrast to the simulation of buoyant convection, the results 
seem relatively sensitive to the value of C,. In past studies the resolved-scale motions 
have been found to damp out with values of C, appropriate to homogeneous 
turbulence. In  the earliest study by DeardorfY (19704 using 6720 grid points C, = 0.17 
was found to damp resolved motions and C, = 0.1 was judged to be optimum. Smaller 
values of C, gave excessive turbulence energy. In spite of the coarse numerical mesh 
the results were encouraging and gave good agreement with the experimental data 
of Laufer (1951). The difficulty in reconciling the value of C, used to obtain these 
results with that used in simulations of homogeneous turbulence was noted by 
Deardoe ( 1 9 7 0 ~ )  who suggested that C, might be reduced by the flow rotation 
occurring near the wall. Bardina, Ferziger & Reynolds (1983) confirm the suggestion 
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that rotation influences the decay of turbulence but retain the usual ‘homogeneous’ 
value of C, in their large-eddy simulation of such decay. Although further work on 
this point is needed, the present results provide an alternative explanation of the 
apparent need for small values of C,. 

Following Deardorff (1970b), Schumann (1975) calculated turbulent channel flow 
with 65536 grid points. In  an effort to circumvent the tendency for resolved-scale 
motions to damp out he proposed, with limited theoretical support, that it  might be 
appropriate to divide the subgrid-scale parametrized stresses into a locally ‘ isotropic ’ 
part with the local spatially meaned shear removed from its derivation, and an 
‘inhomogeneous ’ part derived from the mean shear. The ‘ inhomogeneous ’ part 
dominated close to the wall whilst in the interior the homogeneous part dominated 
and the value of C, was 0.1. With this subgrid model, resolved eddies are essential 
to maintain a shear stress in the flow interior. Should the resolved eddies decay the 
shear stress will diminish, and the mean flow will accelerate under the action of the 
basic pressure gradient until the resolved eddies are enhanced. With the usual 
‘Smagorinsky’ formulation the increase in mean flow is limited by a value of mean 
flow at which the subgrid stresses can balance the basic pressure gradient. This 
arbitrary neglect of the influence of mean shear on subgrid-scale turbulence in the 
flow interior thus encourages the simulation to maintain resolved-scale eddies. These 
results showed the same promise as Deardorffs (1970 b) study and the technique was 
more robust. Schumann (1975) also considered the use of transport equations for 
subgrid-scale energy but found no improvement over the eddy-viscosity model. 

A further limitation of these simulations of channel flow concerns the boundary 
conditions. In the real channel these correspond to turbulent flow over a no-slip 
surface which may be smooth or rough. We shall argue that if the distance of the 
nearest grid point to the wall is sufficiently small then i t  is correct to assume that 
the usual, but local, ‘ law-of-the-wall ’ relations will apply to the instantaneous 
resolved-scale flow. For this to be correct and to give results identical with those 
obtained with resolution of a mixing-length parametrization and a non-slip condition, 
two requirements must be satisfied. First, time dependence, pressure gradients and 
nonlinear accelerations must be negligible and, secondly, the grid point must 
represent an area of sufficient size parallel to the wall for a statistically steady stress 
to occur. Deardorff (1970b) and Schumann (1975) acknowledge that they fail to meet 
such criteria and use boundary conditions which are only correct for the mean flow. 
Schumann’s ( 1975) boundary condition also provides an unphysical constraint on the 
flow. A t  all times the space-average wall stress is compelled to be equal to the time- 
average value. The mass flux through the channel is thus held at its initial prescribed 
value. 

Moin, Reynolds & Ferziger (1978) conducted a simulation with greatly improved 
resolution in the direction normal to the channel walls. They provided much more 
than enough resolution to allow the consistent application of a locally determined 
‘constant-stress’ solution, i.e. ‘law of the wall’, and resolve a viscous sublayer which 
allows a simple no-slip condition. As the wall is approached the lengthscale in the 
subgrid parametrization decreased in accord with a Prandtl mixing-length formula- 
tion. The match to a Prandtl mixing length is intended to represent the small-scale 
eddies which, at high Reynolds numbers, carry the shear stress near the wall. 
Although such eddies are anisotropic they are essentially three-dimensional with 
scales of order that, implied by the Prandtl mixing length and because of the 
limitations in resolution parallel to the wall, cannot be explicitly described in a 
practical simulation. The resolved motions close to the wall retain the scale of the 
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mesh parallel to the wall and are essentially two-dimensional and parallel to the wall. 
In the interior of the flow, Moin et al. used a Smagorinsky subgrid model with a value 
of C, = 0.09. They obtained promising results but concluded that more resolution 
(greater than 16 points) was required in the spanwise direction. The most successful 
simulation is due to M & K and followed, with extensive modifications, the study of 
Moin et al. (1978). They used up to 516096 grid points and a subgrid model similar 
to that proposed by Schumann (1975). As with Moin et al. (1978) very fine resolution 
was used near the wall and the match to a viscous sublayer was achieved by using 
Van Driest (1956) exponential damping functions. As it involves the value of 
time-averaged stress this match is not locally exact. 

In  addition to the problem noted above the various authors express differences of 
opinion regarding both the need for filter functions to separate resolved and subgrid 
scales and also the details of the terms requiring a subgrid model (e.g. Kwak, 
Reynolds & Ferziger 1975). It is argued that, as demonstrated by Leonard (1974), 
the application of analytic filter functions to continuous variables demands terms 
other than those correponding to the usual Reynolds stresses. These extra terms, the 
‘Leonard ’ stresses, are beneficial with accurate high-order finite-difference schemes. 
However, their inclusion is not consistent in second-order-accurate schemes and it has 
been suggested that in such cases the Leonard (Schumann 1975; Antonopoulos-Domis 
1981) terms are implicitly included or zero. We adopt a second-order-accurate 
numerical scheme and thus do not consider explicit Leonard-stress terms. However, 
we shall support the view that the filter function should be considered separate from 
the resolution of the finite-difference mesh. 

The statistical theories of isotropic turbulence also provide models for the 
subgrid-scale stresses (Kraichnan 1976; Leslie & Quarini 1979). These models are 
more naturally applied in a spectral representation of the resolved turbulence. When 
developed to apply in more general conditions (e.g. Cambon, Jeandel & Mathieu 1981) 
they offer a rational way to seek improvements over current subgrid-scale models. 

The main objective of the present study is to provide further information on the 
influence of the constant C, upon thc channel-flow simulations. To accomplish this 
we have used a well-established second-order-accurate numerical scheme with 
energy-conserving properties. The subgrid parametrization is of the form proposed 
by Smagorinsky (1963) and preferred by most authors considering flows without mean 
shear. The boundary conditions are similar to those used in earlier studies with coarse 
meshes but, owing to careful application, should give results identical with those 
obtained by so-called ‘natural’ or no-slip conditions. As the wall is approached a 
Prandtl mixing length is adopted, followed, at a sufficient resolution, by a local 
law-of-the-wall stress calculation. 

To achieve our objectives special care must be taken with both the initial 
conditions and the time duration of simulations. Initial conditions of arbitrary form 
and large amplitude are used to provide a good chance of developing self-sustaining 
turbulence and a convincing demonstration of the timescales for flow adjustment. 
Long-term integrations for up to 45 non-dimensional time units (cf. 4 units in M & 
K ;  one unit is Slur, where S is the channel half-separation and u, is the square root 
of the magnitude of the time-averaged surface stress) are then needed to ensure a 
statistically steady state and to acquire stable statistics. 

In  $$2.1-2.4 we describe the basic equations and the details of the numerical model. 
Then in $2.5 we present the parameters considered and the procedures for obtaining 
flow statistics. The values of C, range from 0.07 to 0.2 and up to 51 200 grid points 
are used. In $3 the resulting turbulence statistics and their dependence upon various 
parameters are examined. The conclusions are presented in $4. 



Subgrid-scale eddy coeficient in turbulent channel $ow 443 

2. Model description 
2.1. Basic equations 

We consider a spatially filtered velocity field fit represented by a numerical model. 
Applying our unspecified-filter operation to the NavierStokes equations and conti- 
nuity equation we have, in the high-Reynolds-number limit, 

where (al, a2, Z3) = (U, V, W )  are the mean velocity components in the plane Poiseuille 
flow : u in the x-direction is the streamwise component; v in the y-direction is the 
component normal to the boundaries in the (x, 2)-plane; and w in the 2-direction is 
the spanwise component of flow. 

A fixed streamwise mean-pressure gradient is included with the 6,,(aP,/axt) term, 
the dynamic pressure includes the trace of the subgrid stress and T ~ ,  is a stress 
tensor. As demonstrated by Leonard (1974), in general T ~ ,  does not correspond to the 
usual Reynolds stresses involved in a time average. However, as noted above, in a 
second-order-accurate finite-difference representation T*, is consistently modelled as 
the usual Reynolds-stress tensor. 

A t  this stage it is useful to make a few points concerning the finite-difference 
representation of (2.1). In accordance with the usual requirements for finite-difference 
solutions (e.g. Roache 1972), only scales of motion represented by a reasonable 
number of mesh points will have properties corresponding to the continuous solution. 
The finite-difference representations of motions on scales less than perhaps 4 grid 
spacings are quite unphysical. We can thus argue that a requirement for satisfactory 
solutions is to ensure that the stress tensor T~~ provides sufficient attenuation of such 
scales. We should also expect that with a fixed form of stress tensor - unrelated to 
mesh spacing - the results should be independent of the mesh as the mesh spacing 
decreases. The filter function can then be regarded as defined through the fixed scale 
subgrid parametrization of T*, and with adequate resolution the results should be 
independent of the mesh and the numerical method. Indeed, if this is not the case, 
then the results would depend on the solution procedure and would be, to some degree, 
arbitrary. 

Various authors (e.g. Kwak et al. 1975) have considered the scale of the filter 
function as distinct from the scale of the computational mesh. However, the view 
that the filter scale is determined by the subgrid parametrization, rather than vice 
versa, is new and its implications are worth discussing. They can be explained in 
relation to the simulation of the rate of decay of homogeneous isotropic turbulence. 
In any large-eddy simulation, agreement with observations should occur either when 
the resolved-scale motions are compared with appropriately filtered data, or when 
resolved plus estimated subgrid motions are compared with raw data. In  previous 
studies of the decay of homogeneous turbulence the former approach has been used. 
With a Smagorinsky (1963) subgrid model and data filtered using a filter scale equal 
to the computational mesh the correct decay was obtained with the value of the 
constant C, - 0.23. This is the value expected from theory with a filter corresponding 
to the mesh spacing. Rather than regard this result as a check on the determination 
of C, we regard the agreement with analytic theory as an indication that the 
resolved-scale motions are realistic. We suggest that the decay rates simulated with 
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larger values of C, seemed to give too rapid a decay only because of the comparison 
with data filtered a t  the fixed mesh scale. If  as C, was increased above 0.23 the scale 
of the filter applied to the data was increased proportionally we would hope that 
agreement would be maintained. It is not so clear that  smaller values of C, will behave 
in a corresponding manner. With smaller values of C, the simulation is, in essence, 
being required to  simulate scales smallcr than the mesh spacing and errors should 
occur. We have not tested these ideas with simulations of homogeneous turbulence 
but they find support in the present study of channel flow. 

2.2. Subyrid parametrization 

The present study is not concerned with obtaining the best simulation but with 
understanding the role of the lengthscalc implied by the subgrid model. We have thus 
adopted the simple, but often used, model proposed by Smagorinsky (1963). This 
model is the local equilibrium limit of a transport equation (Schumann 1975) to  
determine the subgrid-scale energy, i .e. 

where 

v = P(y) s, (2.4) 

and l(y) is a prescribed function varying in y, the across-channel direction. The 
computational mesh used to  resolve the y-direction has a fairly uniform value in the 
interior of the channel but is refined near the walls. Since there is no corresponding 
refinement in the spanwise and streamwise meshes there is little scope for resolving 
small eddies near the walls : l(y) is thus not linked with mesh variations. A fixed basic 
value 1, is specified and near the walls small three-dimensional eddies are represented 
by a Prandtl mixing-length. This in turn allows a match to the law of the wall, i.e. 
we require 

To link this near-wall Prandtl mixing length to the interior value we take 

l (Y)  - K(Y+YO) a5 Y + 0. 

where K is von Kirman’s constant and y = 0 and y = 26 are boundaries of the channel 
with midpoint y = 6. yo is the surface roughness length for a high-Reynolds-number 
flow. This roughness specification arises from an intent to apply the results of this 
study to simulations of the planetary boundary layer. Results obtained for a 
boundary condition with a smooth wall are noted below. 

The specification in terms of 1, has avoided reference to  the constant C, relating 
1, to the typical mesh spacing. To provide comparisons with previous work in terms 
of values of C, we define 

C, = 10 

(Ax Ayma, A$’ (2.7) 

where Ax and Az are the constant grid intervals in the streamwise and spanwise 
directions respectively and by,,, represents the maximum (in practice a typical 
value) grid interval across the channel. 
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From the above comments on numerical solutions, the flows obtained for fixed 1, 
and varying numerical resolution should only differ in consequence of finite-difference 
errors. C, can be regarded as a measure of the finite-difference resolution. For a fixed 
numerical mesh the value of C, giving the best results is likely to be a compromise. 
Low values of C, resolve the greatest range of scales but have potential finite-difference 
errors. High values of C, give a limited range of scales but offer good finite-difference 
solutions. The derivations of C, from inertial-subrange arguments (Lilly 1967) are 
likely to be a sensible compromise as they correspond to a small amount of energy 
on mesh scales. Obtaining the correct decay rate for homogeneous turbulence (e.g. 
Antonopoulos-Domis 1981) has provided a convincing test that this choice is 
satisfactory. 

2.3.  Boundary conditions 
Equation (2 .2 )  is solved in the three-dimensional domain (0, L) ,  (0, W), (0,26), where 
L and W are the length and span of the domain. These are selected in accord with 
previous studies (M & K) and the choice is discussed below. In  the streamwise and 
spanwise directions the domain is assumed periodic, i.e. 

for all variables. 
Normal to the channel walls we enforce the local law-of-the-wall relation for 

high-Reynolds-number flow over a rough surface (see Townsend 1976, p. 140, but 
note the change in the definition of the value of y at which u = 0) ,  i.e. 

f(z + L )  = f ( 4 9  f ( z  + W )  = f ( z )  

where (ii,, c,) are the velocity components in the (2, 2)-directions a t  the lowest grid 
point a distance y = A ,  from the wall, i.e. 

where 1/M = ( 1 / ~ ~ )  ln2 (1 +A,/yo) and uA is the vector velocity at the lowest grid 
point. These relationships are used to calculate the local values of instantaneous 
surface stress u; cos 8, u; sin 8 in the (z, 2)-directions. 

To apply such a boundary condition, flow acceleration at y = A ,  must be negligible 
and steady statistics expected. When the flow acceleration is small the solutions close 
to the wall amount to local ‘constant-stress ’ boundary-layer solutions and the 
near-wall Prandtl mixing length corresponds exactly to the local law of the wall. The 
flow accelerations are of order 7J6 and in the present study we find peak values 
(essentially aj i /ax)  x 57,/6. To neglect such accelerations A ,  must be much less 
than 0.26; this is well satisfied here with A ,  x 0.005 6. The validity of this approach 
was confirmed by demonstrating that the solutions do not depend on the mesh 
resolution A,.  

In  the flow interior 7ij is assumed, incorrectly, to have a deterministic relationship 
with the deformation S ,  and it is not consistent to consider the possibility of a 
statistical variation in the boundary condition. In fact, owing to the small values of 
13(y) /A,  A ,  A, ,  the calculations of the surface values of 7ij represent an average over 
a volume much greater than the scale of the turbulence ( x  A:) .  These are arguably 
the only values of 7tj which are correctly assumed to be deterministic. 

In  common with all flows with multiple timescales a particular law-of-the-wall 

15-2 
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relation cannot be satisfied on more than one timescale (Townsend 1976, p. 156). This 
is not only a feature of the application of a law of the wall but also of Prandtl- 
mixing-length solutions. I n  the present case the time-mean flow satisfies 

where ( ) t  denotes time average. The departure of the time-mean flow from the law 
of the wall depends on the ratio of the resolved-scale variance to  the mean flow a t  
y = A ,  and in the present study 

is about 0.05. Owing to the nonlinear character of the law of the wall such behaviour 
is inevitable in calculations and observational data. It is a simple consequence of the 
presence of scales of motion other than those involved in the local wall equilibrium. 

The procedure adopted here can easily be applied to  high-Reynolds-number flow 
over a smooth wall. In this case 

(2.10) 

where v M  is the kinematic viscosity and C,  an empirical constant of value about 5.0. 
This boundary condition was implemented through an iterative procedure involving 
refinement of an initial guess for u*. A test integration with vM taking a value such 
so that vM/u, = 10-3S (the value of yo considered) gave very similar results to  those 
obtained with the rough-surface boundary conditions (2.8). The only significant 
difference was an increase in mean flow speeds of about 5 . 0 ~ ~ ;  this resulted from the 
‘slip’ of C, u* implied by (2.10). As discussed by Townsend (1976, p. 135) this implied 
flow similarity of high-Reynolds-number flow over smooth and rough walls is to  be 
expected. 

2.4. Numerical methods 
The numerical procedure follows well-established methods whose performance has 
been well documented. The variables are stored on the usual staggered mesh as in 
Williams (1969). I n  order to avoid averaging of the important y-derivatives of the 
mean flow the values of S and eddy-viscosity v are evaluated and stored upon v-points. 
To calculate S the individual stresses rij are calculated on the particular grid-point 
locations at which they are used in the momentum equations. These values are then 
squared and S is derived by averaging the squares onto the v-points. This averaging 
procedure ensures that the volume-averaged dissipation is equal to  the volume 
average of us2 .  The mesh stretching in the y-direction occurs smoothly and does not 
compromise the second-order-accurate spatial derivative (Kalnay de Rivas 1972). 
The inertial terms are calculated using the ‘absolutely conserving’ scheme of Piacsek 
& Williams (1970) and are time-advanced by a leap-frog scheme. A weak time filter 
(Mason & Sykes 1978) is applied continuously to prevent time-splitting. The viscous 
terms are calculated with a simple forward step. Owing to the moderate ‘turbulent’ 
Reynolds number characterizing the flows this does not give a loss of accuracy and 
was adopted to avoid the complexities of coding and storage organization associated 
with implicit methods. The stability of the forward step imposed a limit to  the mesh 
refinement. I n  the examples considered, the mesh refinement has been selected so that 
the Courant condition ((2.1 1 )  below) remains more restrictive than the viscous 
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8 = channel half-width 
yo = surface-roughness length 

Domain length L = 68 
Domain width W = 36 

ur = square root of surface stress 
u, = centreplane velocity 

yo/8 = 10-3 
u,/ur x 22 

TABLE 1.  Basic parameters 

- 10 Averaging Ax Ay Az - 
Runno. N ,  Nu N ,  8 max- 8 - 8 C, 8 time 

A2 40 40 32 0.15 0.066 0.094 0.2 0.019 12 
B2 20 26 16 0.3 0.124 0.188 0.2 0.038 11 
B1 20 26 16 0.3 0.124 0.188 0.1 0.019 12 
c 2  16 18 12 0.375 0.229 0.25 0.2 0.056 1 
c1 16 18 12 0.375 0.229 0.25 0.1 0.028 13 
C07 16 18 12 0.375 0.229 0.25 0.07 0.019 12 
D1 10 18 8 0.6 0.229 0.375 0.1 0.037 13 

TABLE 2. Details of the numerical simulations. Ni is the number of grid points in the i-direction, 
Ai is the corresponding grid interval and the averaging time is in units of 8/u,. 

criterion (2.12). The Poisson equation for pressure is solved by a direct method using 
a fast Fourier transformation in the directions parallel to the channel walls and a 
line inversion of the resulting tridiagonal matrices normal to the walls. With a mesh 
of 40 x 40 x 32 grid points each time step of the model takes about 8 s CPU time on 
an IBM 3081. 

2.5. Parameters and procedures 
The relative dimensions of the computational domain (table 1) were selected in accord 
with previous large-eddy simulations and ensure that the dominant scales determined 
in the experimental data of Comte-Bellot (1963) are included. Owing to the 
consideration of high-Reynolds-number flow over a rough surface, the channel flow 
depends on the parameter yo/6, which in all cases was taken to be loL3. If the 
molecular-viscosity term is small or, as in the present study, zero then similarity 
considerations can be applied. The flow in the interior of the channel will be a fixed 
function of u, and S and only the wall relations will depend upon either yo or, if a 
smooth wall, the Reynolds number. The flow in the centre of the channel will be given 

by either 1 - u~ = uco+- ln (i) 
UT K 

or 

depending on whether the wall is rough or smooth. Here uco is a constant for 
high-Reynolds-number channel flow. In the present study, apart from these changes 
in the ‘origin’ of the mean-flow profiles there should thus be no other dependence 
upon Reynolds number or yo. The maximum number of grid points used was 51 200 
and table 2 summarizes the number of mesh points and other characteristics of each 
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Mesh A Mesh B Mesh C and D 

n Y AY ?! AY Y AY 
- - 1 0.000 - 0.000 0.000 

2 0.0036 0.0036 0.0058 0.0058 0.0104 0.0104 
3 0.0127 0.0091 0.0209 0.0151 0.0384 0.0280 
4 0.0273 0.0146 0.0465 0.0256 0.0876 0.0492 
5 0.0507 0.0234 0.0889 0.0424 0.1708 0.0832 
6 0.0850 0.0343 0.1521 0.0632 0.2958 0.1250 
7 0.1301 0.0451 0.2360 0.0839 0.4626 0.1668 
8 0.1843 0.0542 0.3371 0.101 1 0.6633 0.2007 
9 0.2445 0.0602 0.4498 0.1 127 0.8854 0.2221 

10 0.3081 0.0636 0.5690 0.1192 1.1146 0.2292 
11 0.3733 0.0652 0.6912 0.1222 
12 0.4391 0.0658 0.8145 0.1233 
13 0.5050 0.0659 0.9381 0.1236 
14 0.5710 0.0660 1.0618 0.1237 
15 0.6370 0.0660 
16 0.7030 0.0660 
17 0.7690 0.0660 
18 0.8350 0.0660 
19 0.9010 0.0660 
20 0.9670 0.0660 
21 1.0330 0.0660 

TABLE 3. Grid distribution in the y-direction from the wall to the centre of the channel. n is the 
grid-point number, y the normalized distance from the wall and Ay the local mesh spacing. 

simulation. The meshes used in the y-direction are derived by smoothing a mesh 
consisting of linear sections, and the three meshes used are presented in table 3. 

In keeping with results reported in the literature, the ability of the model to sustain 
resolved turbulent fluctuations was found to depend upon the initial conditions. To 
develop self-sustaining turbulence it was found essential to start with an excessive 
value of centreline velocity. The initial mean-velocity profile was thus taken as the 
equilibrium-velocity profile occurring in the absence of resolved-scale motions. This 
' mixing-length ' solution was calculated using the finite-difference mesh and the 
chosen value of 1,. The initial flow perturbation consisted of an alternating addition 
and subtraction of a velocity u,, from cubic blocks of fluid of size S3. This preserved 
the mean-velocity profile but was quite arbitrary. 

This arbitrary initialization procedure forces the use of integration periods 
sufficient to give statistically steady results. The surface stress on the channel took 
about 20 6/u, to assume its steady-state value and model statistics were not obtained 
until after 25 6/u,. It is clear that some previous studies over periods of x 4 6/u, were 
highly dependent on initial conditions and might, given longer timescales, have shown 
further changes. The present turbulent statistics were obtained by averaging results 
sampled at  intervals of 0.01 6/u, over a period of x 10 Slur. Although shorter periods 
x 6/u, gave similar statistics this longer period was necessary to make the statistics 
symmetric (within a few percent accuracy) about the centre of the channel. During 
the integrations the quantities 

(2.11) 
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and 
[min (Ax2, 8VAt Ay2(y), A.9) 1 ’ C, = max (2.12) 

where At is the time step, were both kept less than 0.3 and the larger of two usually 
greater than 0.2. This was achieved by reviewing the value of At at intervals of 
0.1 6/u,. To minimize C, the equations were subject to a Galilean transformation 
which was also reviewed at intervals of 0.1 6/u,. 

In what follows we will use angular brackets ( ) to denote variables averaged in 
time and (x, %)-planes parallel to walls. The variable u’ is defined as the departure 
of ii from its instantaneous (x, 2)-plane average. The off-diagonal subgrid-stress 
components of rij are calculated from (2.3) whilst the diagonal values rii have an 
isotropic constant #k added. In  accord with the mixing-length limit of high-order 
closure techniques (Launder & Spalding 1972), k is given by 

k = Cjjl 12(y) S2, 

where C, is a constant stress-energy ratio assumed to have the value 0.3. This simple 
diagnostic model of subgrid turbulence energy is only intended to give an appraisal 
of the general magnitude of the subgrid energy. At the channel wall it implies an 
unrealistic isotropy of the energy components. Except for the present simple 
objectives it would be better to use an anisotropic parametrization in the region near 
the walls. 

3. Results 
As already noted the parameters characterizing each of the flow simulations are 

summarized in table 2. Each simulation is denoted by a letter followed by a number. 
The letter indicates the mesh used and the number the value of C,. The values of 
C, and 1, have been varied independently, e.g. runs A2, B2 and C2 all have C,  = 0.2 
but have different values of I ,  whilst runs A2, B1 and C07 have the same value of I , .  

In previous work, where a value was assigned to C,, a value of 1, could be calculated 
from the typical mesh spacing. The smallest value of 1, used here, I ,  = 0.0198, is 
similar to the values of 0.0186 and 0.0136 used in the studies of Moin et al. (1978) 
and DeardorfT (1970) respectively. In the study of M & K a much finer mesh was used 
and 1, had the value 0.0056. 

In view of the apparent difficulties of some previous studies in sustaining 
resolved-scale turbulence i t  is convenient to begin with an examination of the 
statistics for V. Figure 1 (a)  illustrates the time history of the grid-point-averaged 
value of 9. Owing to the non-uniform grid spacing near the walls, this value is very 
slightly smaller than the volume-averaged value of 9. The three cases presented (A2, 
B2 and C2) are typical of the types of behaviour observed. In each case the initial 
high amplitude decays quickly and near-equilibrium is achieved at t x 206/u,. 
Long-term x 10 6/uT fluctuations are evident in the cases with sustained energy. Run 
B1 is not shown but is similar to A2. Run B2 shows a low level of sustained energy. 
An earlier attempt to generate run B2 by changing the value of I ,  in run B1 at time 
25 6/u, gave no resolved-scale motions and illustrated the importance of initial 
conditions. Run C2 shows no sustained resolved-scale motions. These results suggest 
that with an adequate mesh (A) the value of C, found favourable for homogeneous 
turbulence will allow a sensible channel-flow simulation. 

These long-term fluctuations in the turbulence energy are related to fluctuations 
in the space-average stress on the walls of the channel. Figure 1 (b )  shows the time 
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FIGURE 1. The time evolution of statistics. ( a )  The evolution of the variance of V averaged over 
the total number of grid points in the whole computational domain, ?&,. Results for cases A2 
(......), B2 (+ )  and C2 (a) are given and each symbol denotes a successive time average. As 
indicated by the symbol spacing, the averaging periods varied between cases. (b) The evolution of 
the space-average wall stress for case A2. The stress on each wall and the net stress are shown 
separately. Values are derived as time averages over the same intervals as used in (a). For ease of 
presentation continuous curves have been drawn : - - -, wall stress y = 28; . . . . . . , wall stress y = 0; 
-. mean wall stress. 
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FIGURE 2. Profiles of the y-variation of the resolved (9) and total (??+T**) variance. (a) and (b )  
C, = 0.1. -, B l ;  ---, C l ;  x-x ,  D l ;  (c) and (d )  C, = 0.2. -, A2; ---, B2; X - X ,  C2. 

evolution of the wall stress for case A2. The stress on each of the walls and the net 
wall stress are illustrated. It is evident that after about 256/u7 the fluctuations are 
of order 10 % of the time mean and mask any longer-term tendencies. The average 
statistics presented below were obtained over the last period of duration lOS/u,. 
During this period the wall stress is a few percent above the long-term time mean 
determined by the basic pressure gradient. This departure from the long-term mean 
may be a combination of incomplete adjustment to equilibrium or a statistical 
fluctuation. Comparison of average statistics obtained from successive intervals of 
duration 106/u7 suggest a statistical error of a few percent for the results given 
below. The asymmetrics between the stress on the walls have a bigger amplitude than 
the variation in the mean, and differences of 20% of time-mean value persist for 
several 6/u7. Both the asymmetries and time variations indicate that boundary 
conditions that assume a fixed value of wall stress will be unrealistic. 

Figure 2 illustrates the profiles of resolved and total 6-variance normal to the 
channel walls, i.e. (3) and ( 3 + ~ ~ ~ >  respectively. Owing to the near-symmetry about 
the centre of the channel only one half of the profile is shown. The cases are grouped 
into fixed values of C, with varying mesh resolution. The cases with C, = 0.2 are the 
ones whose time dependence is illustrated in figure 1. The total variance in cases B2 
and C2 are dominated by T~~ and tend towards a linear variation corresponding to 
the fixed subgrid-stress-energy ratio. With C, = 0.1 cases B1 and C1 both give 
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FIQURE 3. Profiles of the y-variation of the 2! variance. (a) The resolved-scale (3) for three cases 
with 1, = 0.0198: -, A2; ---, B1; x - x , C07. ( b )  The total variance (3+712)  for case A2 (-) 
compared with the simulation of Moin & Kim (1982) (---) and the observations of Comte-Bellot 
(1963) ( x - x ). 

realistic resolved-scale motions but there are weaker eddies in case D1. These results 
show that as C,  is reduced from 0.2 to 0.1 a coarser mesh will support resolved-scale 
turbulence. 

I n  figure 3 (a),  the profiles of w-variance are grouped together for a constant value 
of 1,lS = 0.019. The curves for A2 and B1 have already been shown and C07 is 
included. I n  contrast to the large changes in resolved-scale motion with fixed C, and 
varying resolution the changes with I ,  fixed are less marked. There remains a tendency 
for the values of (3) to increase as the numerical resolution decreases. Since the basic 
continuous equations posed for these cases are the same, we argue that the changes 
must be attributed to finite-difference errors. Although a run with better resolution 
than mesh A has not been conducted we expect finite-difference errors to  be small 
in case A2. We discuss this point further below when examining the velocity fields. 

For comparison, in figure 3 ( b ) ,  curves of resolved 6-variances from the simulation 
of M & K and the experimental data of Comte-Bellot (1963) are shown. These results 
are for Reynolds numbers (based on centreplane flow speed) of 13800 and 57000 
respectively but provide the best available comparisons. We should emphasize that 
we have not sought to conduct the best simulation but rather to understand the role 
of C,  and I , .  The M & K results are obtained with a smaller value of I ,  and, especially 
near the wall, a larger resolved component is expected. When compared with the 
experimental data the present case A2 shows fair agreement but not as good as that 
obtained by M & K. I n  particular it is evident that close to  the wall the subgrid 
variance is excessive. This is only a diagnostic consequence of the assumed isotropy 
of the subgrid variance and is not inherent in the calculation. 

Profiles of U- and 6-variance are shown in figures 4 and 5. With U the coarser- 
resolution results B1 and C07 show less variance than case A2. This seems to be 
associated with the more-marked longitudinal structures in case A2. The values of 
( ( U ) ~ + + ~ ~ J  are somewhat greater than those observed or those obtained by M & K. 
With w the values of variance are somewhat less than observations and the results 
of M & K. We feel the discrepancies are best attributed to  the limited range of resolved 
scales in the present study and would hope that with more mesh points better results 
could be obtained. It seems that in t,he present simulations with I ,  = 0.019s the 
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FIGURE 4. Profiles of the y-variation of the streamwise-velocity-component variance. (a) The 
resolved-scale ( ( u ' ) ~ )  for three cases with 2, = 0,0196: -, A2; ---, B1; X- x , CO7. (b)  The 
total variance ((u')* +711) for case A2 (-) compared with the simulation& of Moin BE Kim (1982) 
(---) and the observations of Comte-Bellot (1963) ( x - x ). 

organized longitudinal structures are too important. A smaller value of lo ,  as used 
by M & K, will allow a higher 'eddy-viscosity Reynolds number' and more scope for 
introducing a higher degree of random structure. 

Figure 6 shows profiles of stress ( U f i + ~ ~ ~ )  and ( U V )  across the whole channel for 
case A2. The significance of the subgrid scale is well illustrated and a minor 
asymmetry is evident in the non-zero value of stress at y = 6. This is a feature of the 
finite averaging period and is precisely related to asymmetries in the meen-velocity 
profiles. The mean-velocity profiles (figure 7) show maximum values which vary 
nearly inversely with the resolved-scale &energy. The velocity profiles for cases B1 
and A2 are illustrated and are fairly similar. The velocity profile for case B2 is 
essentially a mixing-length solution based on the scale 1,. It shows a greater velocity 
but is not grossly unrealistic. Values of 1, equal to 0.056 give realistic values of 
centreline velocity. It should thus come as no surprise that values of 1, of about 0.04 6 
and greater give no resolved-scale motions. The subgrid parametrization is then a 
crude but adequate representation of the turbulent flow. For comparison the 
experimental data of Hussain & Reynolds (1975) and Comte-Bellot (1963) at 
Reynolds numbers of 13800 and 57000 respectively are illustrated. The comparison 
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F~QURE 5. Profiles of the y-variation of the spanwise-velocity-component variance. (a) The 
resolved-scale (w")  for three cases with 2, = 0.0198: -, A2; ---, B1; x - x , CO7. (b) The total 
variance (i2+799) for case A2 (-) compared with the simulation of Main &, Kim (1982) (---) 
and the observations of Comte-Bellot (1963) ( x - x ). 

is confounded by both the difference between smooth- and rough-wall boundary 
conditions and the different values of Reynolds number. When the profiles are 
shifted so that the velocities near the wall agree there is good agreement. 

As noted by M & K the correlation coefficient for the shear stress 

should provide an indication of the realism of the resolved-scale motions. In figure 8 
this coefficient is compared with the experimental data of Sabot & Comte-Bellot 
(1976). The agreement is particularly good and very similar to that found by M & 
K in their simulations. 

We conclude our presentation of results with an examination of sections of the flow 
field. Figure 9 illustrates sections in a plane parallel to the channel walls at  y = 9. 
Fields of the velocity component normal to wall V are given for runs A2, B1 and C07, 
i.e. a constant value of lo = 0.0196. In case A2 (figure 9a) the field shows some 
evidence for the characteristic streak structure seen in previous studies (M & K) and 
observations (Runstodler, Kline & Reynolds 1963). These streaks can be seen clearly 
in the C-field discussed below. The distribution of mesh points is indicated at  the edge 
of the frame and it is evident that the structures are smoothly described and well 
represented. In case B1 (figure 9b) the streaks are much less pronounced and the field 
is similar to that seen a t  greater values of y (see below). The numerical representation 
is not as good as it  should be, with a number of significant features dominated 
by single grid-point values. The contour-plotting routine uses simple linear inter- 
polation and provides a faithful representation of the grid-point values. Case C07 
(figure 9 c )  has very poor resolution and the structures are quite unphysical. The fact 
that case C07 gives plausible turbulence statistics should strike more a note of caution 
than a declaration of success. With such a poor description of the flow and obvious 
severe finite-difference errors there can be little correspondence with the Navier- 
Stokes equations. 

The inadequacy of the finite-difference representation used in cases C07 and B1 
is confirmed by the form of the spatial spectra of the velocity components. Figure 10 
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FIQURE 8. Profile of the y-variation of the correlation coefficient 

for case A2. The solid curve shows the experimental data of Sabot & Comte-Bellot (1970). 

shows x-direction spectra of the v-component of flow. In accord with the profiles 
of (3) the energy density in low wavenumbers is seen to increase as the resolution 
decreases. At the same time the energy density on the shortest scales also increases. 
In contrast to the other cases, in A2 it is seen that on scales shorter than 4 Ax (m = 10) 
there is a rapid fall of energy density with increasing wavenumber. 

A more detailed examination of the flow fields in case A2 confirms their plausible 
appearance. Figures 11 (a )  and ( b )  show the sections of streamwise ii- and spanwise 
%velocity components at  y = +$' corresponding to the realization of V given in 
figure 9 (a).  The spanwise component can be largely accounted for by the continuity 
of flow in two-dimensional flow streaks. A comparison of the streamwise and 
*-components shows a negative correlation between U and V which corresponds to 
the transfer of momentum towards the walls. 

Figure 12 shows a section of the 6-field in a plane parallel to channel walls a t  y = @. 
The streaks are less evident and the turbulent eddies near the centre of the channel 
have a more isotropic structure. Sections in the (z ,  9)-plane normal to the stream are 
shown in figures 13 ( a )  and ( b ) .  The y-direction scale allows an equal distance for each 
mesh point and true values of y can be deduced from values on the axis of the 
diagrams. Figure 13 (a )  shows contours of the streamwise flow and figure 13 ( b )  shows 
flow vectors in the (z ,  y)-plane. Near the walls the high correlation between ii and 
@ is again clearly evident. The resolved eddies are well represented by the finite- 
difference mesh. The parametrization of near-wall turbulence with 1, x ~(y+y, )  
occurs below a height x 0.058 where it is clear that small-scale three-dimensional 
motions could not be represented. 
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X 4  

FIQURE 9. Section of the &velocity fields in the (2, 2)-plane at y = &IS. (a), (b )  and (c) illustrate 
results from cases A2, B1 and C07 (constant 1, = 0.0198) respectively. Negative values are denoted 
by dashed contours and the contour intervals are 0.126u,, 0 . 1 7 5 ~ ~  and 0.148u, respectively. 
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FIQURE 10. Spectra of v for cases A2 (A), B1 (0) and C07 (+).  Time and spanwise average of the 
x-direction spectra of v in the centre of the channel. The wavenumbers m are given by m = L / h ,  
where h is the wavelength. Em is the energy in each wavenumber. 

4. Conclusions 
A series of large-eddy simulations of plane Poiseuille flow have been conducted. 

In  the interior of the flow the subgrid-scale motions are parametrized with the 
eddy-viscosity formulation proposed by Smagorinsky (1963). Near the walls this is 
matched to a Prandtl-mixing-length solution. The lengthscale used in the Smagorinsky 
formulation 1, is related to a typical mesh spacing A by the usual constant C, = Z,/A. 

The resolved-scale turbulence energy in the simulations is found to depend 
primarily upon the value of Z,,/8, where 8 is the channel half-width. Values of 
Z,/8 2 0.05 give no resolved-scale eddies and only when 2, is less than x 0.038 do 
resolved-scale eddies seem sustainable. In fact, unless initial conditions are carefully 
chosen 1, must be less than 0.02 8 for sustained eddies. 

If C, is varied with constant mesh spacing A then 1, is also varied and the results 
show a strong dependence on C,. However, if C, is varied by changing the mesh 
spacing with 1, held fixed, the variations are much weaker. It is also evident that, 
whilst larger values of C, ( x  0.2) give flows with a smoothly varying spatial structure, 
smaller values of C, (x0.1) give flows with excessive amounts of grid-scale motions. 
This result was anticipated from general considerations of numerical methods. The 
smaller values of C, thus appear to give excessive finite-difference departures from 
the continuous solutions. Large values of C, give smooth solutions but, if too large, 
waste numerical resources. The value of C, found consistent with the cascade of energy 
in homogeneous isotropic turbulence, M 0.2, seems close to optimum and gives 
solutions with just adequate numerical resolution. 

The previous suggestion (Deardorff 1 9 7 0 ~ )  that the simulation of shear-driven 
turbulence requires a smaller value of C, than homogeneous isotropic turbulence is 
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FIGURE 11. Sections of the ii (figure 10a) and ii? (figure lob) velocity fields in the (5, 2)-plane at 
y = 9 for caae A2 for the same time as the &field shown in figure 9 (a). Negative values are denoted 
by dashed contours and the contour intervals are 0.469u, and 0 . 1 2 8 ~ ~  respectively. 

not verified. Provided 1, 5 O.O2S, simulations with C, = 0.2 appear quite satisfactory. 
The ratio of I ,  to the scale of the flow S is a measure of the ‘turbulent’-eddy- 
viscosity-based Reynolds number of the flow and unless I ,  is 5 0.026 this Reynolds 
number is simply too low for sustained eddies. In  fact when 1, is 2 0.056 the velocity 
profile determined by the subgrid stresses has a maximum value less than that 
observed and there is no requirement for further transport processes. 

In addition to considering the role of the parameters 116 and C,, the present study 
has provided further examples of large-eddy simulations. The turbulent statistics 
obtained in the present study with 1, = 0.0196 and C, = 0.2, like those of previous 
studies, are most encouraging. A new result obtained through the use of much 
longer-duration simulations is an identification of the timescales for flow adjustment 
and the presence of long-timescale fluctuations. A timescale of x 2OS/u, (where u, 
is the square root of the surface stress) is needed to obtain a correct flow independent 
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FIGURE 12. Section of the a-velocity field in the (x,z)-plane at y = a t  the same time as the field 
shown in figure 9(a). Negative values are denoted by dashed contours and the contour intervals 
are 0 . 1 8 6 ~ ~ .  
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FIGURE 13. Sections of (a) the streamwise velocity U and (b) V, W flow vectors in the ( z ,  y)-plane 
for run A2. The time is the same as for figure 9(a )  and the section is at the centre of the domain. 
Note that the y-scale allows equal distance for each mesh interval and true heights are given on 
the axis. The contour interval in (a) is 2.4211, and the peak value of a in the vector field is 2.lu,. 

of initial conditions. The flow is then found to contain significant variations on a 
timescale of order 10 6/u, which give fluctuations in both the resolved-scale energy 
and across-channel symmetry. 

As noted above, in future work these conclusions regarding the role of 1, and C, 
should also be tested on the simulations of homogeneous isotropic turbulence. In  its 
own right the present work supports the use of a Smagorinsky subgrid model with 
C, x 0.2 and suggests that, if the resolved-scale turbulence should decay, increased 
resolution is needed to  reduce I , .  The previous failures to sustain resolved-scale 
turbulence energy with C,  = 0.2, and the need to neglect deformation due to  mean 
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shear, are attributed to  the implied values of Cs being 2 0.036 and too large to allow 
sustained motions. The need for adequate initial conditions when 1, is z 0.026 may 
also have contributed to  these failures. Although we suggest that  values of Cs x 0.2 
and neglect of mean shear are not desirable we acknowledge that useful results have 
been obtained with such features. We regard this success as no more than an 
indication that, within certain bounds, the dominant resolved-scale motions are not 
too sensitive t o  the subgrid model. 
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